Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема может быть исполнена в корпусе ТО-220:

или в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

Сборка в железе

Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)


Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.


А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.


Все это аккуратно упаковываем в корпус и выводим провода.


Ну как вам? ;-)


Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.



Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт



Все работает на ура!

Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.


Аналоги на Алиэкспресс

Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.


Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:


Посмотреть можно по этой ссылке.

Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:


В каждой современной квартире имеется большое количество всевозможных гаджетов, требующих постоянного электрического питания. В основном они работают от различных батареек, с относительно коротким сроком службы. Многие хозяева пытаются подключать эти устройства через обычные сетевые блоки питания на 12 В, но в большинстве случаев это не очень удобно. Основная причина заключается в больших размерах и весе понижающих трансформаторов, которые требуют себе отдельного места. Выйти из положения поможет бестрансформаторный блок питания, изготовленный на основе гасящего конденсатора.

Основным условием его нормальной работы является правильное выполнение всех необходимых расчетов. В этом случае данное устройство обеспечит надежное функционирование аппаратуры в полном автономном режиме.

Общее устройство и принцип действия

Представленная схема отличается простотой, надежностью и эффективностью. Она может быть изготовлена не только методом навесного монтажа, но и в виде печатной платы. Данная схема на двенадцать вольт является рабочей, требуется лишь заранее рассчитать параметры балластового гасящего конденсатора и подобрать нужное значение тока для конкретного устройства. Практически можно сделать 5,5-вольтовый блок с возможностью увеличения напряжения до 25 В.

Основой устройства служит балластовый конденсатор, гасящий сетевое напряжение. После этого ток попадает в диодный выпрямитель, а второй конденсатор выполняет функцию фильтра. Иногда возникает необходимость быстро разрядить оба конденсатора. С этой целью в схеме предусмотрены резисторы R1 и R2. Еще один резистор R3 используется в качестве ограничителя тока при включении нагрузки.

Расчет балластного конденсатора выполняется до сборки схемы. Для этого используется простая формула С = 3200хI/Uc, в которой I является током нагрузки (А), Uc - сетевым напряжением, С - (мкФ). Чаще всего такие расчеты используются для светодиодов.

В качестве примера можно взять любой прибор с током 150 мА. Это может быть обычная светодиодная лампа. Сетевое напряжение будет 230 В. Таким образом, 3200 х 0,15/230 = 2,08 мкФ. Номинал конденсатора выбирается наиболее близко к расчетному, то есть, его емкость составит 2,2 мкФ, а расчетное напряжение - 400 В.

Такой простейший бестрансформаторный блок не имеет с питающей сетью. В связи с этим должна быть обеспечена надежная изоляция всех соединений, а само устройство - помещено в корпус из диэлектрического материала.

Основные рабочие схемы

В большинстве случаев используются две схемы источников БП. Как правило, каждый из них представляет собой бестрансформаторный блок питания с гасящим конденсатором, который служит основным элементом данных приборов. Теоретически считается, что в цепях переменного тока эти устройства вообще не потребляют мощности. Однако в реальности в конденсаторах возникают определенные потери, что приводит к выделению некоторого количества тепла.

Поэтому все конденсаторы подвергаются предварительной проверке на возможность использования его в блоке питания. Для этого их подключают к электрической сети и отслеживают колебания температуры через некоторый промежуток времени. Если конденсатор заметно разогревается, то его нельзя использовать в качестве конструктивного элемента. Допускается лишь незначительный нагрев, неспособный повлиять на общую работоспособность устройства.

1.

Представленные на рисунках источники питания имеют конденсаторный делитель. На рисунке 1 представлен делитель общего назначения на 5 В, рассчитанный на токовую нагрузку до 0,3 А. На рисунке 2 отображается схема источника бесперебойного питания, который применяется в электронно-механических кварцевых часах.

В первой схеме включает в себя бумажный конденсатор С1 и два оксидных конденсатора С2 и С3. Оба последних элемента составляют неполярное плечо, расположенное ниже С1. Его общая емкость составляет 100 мкФ. Составные части диодного моста, расположенные слева, выступают в качестве поляризующих диодов, предназначенных для оксидной пары С2 и С3. На схеме указаны номиналы элементов, в соответствии с которыми на выходе ток короткого замыкания будет равен 600 мА, а напряжение на конденсаторе С4 без нагрузки - 27 вольт.

2.

Вторая схема бестрансформаторного блока питания предназначена для замены батареек (1,5В), используемых в качестве источника питания в электронно-механических часах. Напряжение, вырабатываемое блоком питания, составляет 1,4 В при средней токовой нагрузке 1 мА. Напряжение на конденсаторе С3 без нагрузки не превышает 12 В. Оно снимается с делителя, поступает на узел с элементами VD1 и VD2, где и происходит его выпрямление.

В каждом из этих вариантов рекомендуется использовать два дополнительных резистора вспомогательного назначения. Первый элемент с сопротивлением от 300 кОм до 1 мОм подключается параллельно с гасящим конденсатором. С помощью данного резистора ускоряется его разрядка, после того как устройство отключено от сети.

Другой резистор имеет сопротивление от 10 до 50 Ом и считается балластным. Он подключается в разрыв какого-либо сетевого провода последовательно с гасящим конденсатором. Данный резистор ограничивает ток, проходящий через диодный мост при подключении устройства к сети. Оба резистора должны обладать мощностью рассеяния не менее 0,5 Вт, позволяющей предотвратить вероятные поверхностные пробои этих деталей действием высокого напряжения. Балластный резистор снижает нагрузку на стабилитрон, но одновременно наблюдается рост средней мощности, потребляемой самим блоком питания.

Расчеты основных параметров

Для того чтобы устройство было работоспособным и надежно функционировало, необходимо выполнить предварительный расчет бестрансформаторного блока питания. С этой целью потребуется рассчитать основные параметры:

  • . При включении конденсатора в цепь переменного тока, он начинает оказывать влияние на силу тока, протекающего по этой цепи, то есть на определенном этапе он становится сопротивлением. Чем больше емкость конденсатора и частота переменного тока, тем меньше величина емкостного сопротивления и наоборот. Для расчетов используется формула X C = 1 /(2πƒC), где Х С - емкостное сопротивление, f - частота, С - емкость. Ускорить расчеты и получить точные данные поможет онлайн-калькулятор, в который достаточно лишь ввести исходные данные.
  • Сопротивление нагрузки (Rн). Его расчет позволяет выяснить, до какого значения Rн может быть уменьшено, чтобы Напряжение нагрузки стало равным напряжению стабилизации. Когда необходимо изготовить блок питания своими руками, рекомендуется воспользоваться справочной таблицей, поскольку формулы слишком сложные и не дают точных результатов.
  • Напряжение гасящего конденсатора. Этот показатель обычно составляет не менее 400 В, при сетевом напряжении 220 вольт. В некоторых случаях используется более мощный элемент, с номинальным напряжением 500 или 600 В. Для бестрансформаторных блоков подходят не все типы конденсаторов. Например, устройства МБПО, МБГП, МБМ, МБГЦ-1 и МБГЦ-2 не могут работать в цепях переменного тока, в которых амплитудное значение напряжения более 150 В.

Для любых радиоэлектронных схем требуются источники питания . И если одно устройство может работать непосредственно от сети то для других необходимы другие напряжения: для цифровых микросхем как правило +5V (для ТТЛ логики) или +7..9V (для КМОП технологий).
Кстати, что это такое: ТТЛ и КМОП можно почитать
Для различных игрушек требуется обычно +5...12V. для питания светодиодов +3..+5V, для усилителей вообще многообразно..

В общем так или иначе возникает вопрос о изготовлении источника питания , причем не просто источника а такого чтобы он отвечал соответствующим требованиям: необходимые напряжение и ток на выходе, наличие защиты и так далее.

Источникам питания у нас посвящен отдельная категория, которая так и называется Источники питания (материалы в категории), здесь-же мы рассмотрим самый простейший вариант бестрансформаторного источника питания для простых изделий, который можно изготовить буквально за пару минут. Вот его схема:

Конечно мощность такого источника невелика и его можно использовать лишь для самых простых схем, но самое главное то что он стабилизированный.

Именно "+", микросхемы для отрицательного напряжения имеют маркировку 79XX.

На схеме указанной выше выходное напряжение составляет +5V (по типу примененной КРЕНки), но при необходимости его можно и изменить установив другую микросхему.
Только вот при этом потребуется обратить внимание и на стабилитрон на входе: его нужно выбирать таким чтобы напряжение на входе и выходе КРЕН имело разницу минимум в 2V.

Ну это еще не все: даже используя микросхему со стандартным выходным напряжением все равно при необходимости можно напряжение на выходе немного изменять (например получить 7,5V или 6,5). Для этого к микросхеме необходимо добавить дополнительный цепи из диодов или стабилитронов и как это сделать можно почитать .

Даже такой простой источник питания можно немного "умощнить", то есть добиться более высокого тока в нагрузке. Но тогда потребуется введение дополнительных балластных резисторов на входе. Так, к примеру, вот схема бестрансформаторного источника питания с выходным напряжением +12V

Многие радиолюбители не считают блоки питания без трансформаторов. Но несмотря на это, они используются довольно активно. В частности, в охранных устройствах, в схемах радиоуправления люстрой, нагрузками и во многих других устройствах. В данном видеоуроке рассмотрим простую конструкцию такого выпрямителя на на 5 вольт, 40-50 мА. Однако можно изменить схему и получить практически любое напряжение.

Бестрансформаторные источники также применяются в качестве зарядных устройств и используются в запитке светодиодных светильников и в китайский фонариках.

Для радиолюбителей есть всё в этом китайском магазине .

Анализ схемы.

Рассмотрим простую схему бестрансформаторного . Напряжение от сети 220 вольт через ограничительный резистор, который одновременно выступает как предохранитель, идет на гасящий конденсатор. На выходе также сетевое напряжение, но ток многократно понижен.

Рисунок. Схема бестрансформаторного выпрямителя

Далее на двухполупериодный диодный выпрямитель, на его выходе получаем постоянный ток, который стабилизируется посредством стабилизатора VD5 и сглаживается конденсатором. В нашем случае конденсатор 25 В, 100 мкФ, электролитический. Ещё один небольшой конденсатор установлен параллельно питанию.

Дальше оно поступает на линейный стабилизатор напряжения. В данном случае использован линейный стабилизатор 7808. В схеме есть небольшая опечатка, выходное напряжение на самом деле приблизительно 8 В. Для чего в схеме линейный стабилизатор, стабилитрон? На линейные стабилизаторы напряжения в большинстве случаев не допускается подавать на вход напряжение выше 30 В. Поэтому в цепи нужен стабилитрон. Номинал выходного тока определяется в большей степени ёмкостью гасящего конденсатора. В данном варианте он с ёмкостью 0, 33 мкФ, с расчётным напряжением 400 В. Параллельно конденсатору установлен рарзряжающий резистор с сопротивлением 1 МОм. Номинал всех резисторов может быть 0, 25 или 0, 5 Вт. Данный резистор для того, чтобы после выключения схемы из сети конденсатор не держал остаточного напряжения, то есть разряжался.

Диодный мост можно собрать из четырех выпрямителей на 1 А. Обратное напряжение диодов должно быть не менее 400 В. Можно применить также готовые диодные сборки типа КЦ405. В справочнике нужно посмотреть допустимое обратное напряжение через диодный мост. Стабилитрон желательно на 1 Вт. Напряжение стабилизации этого стабилитрона должно быть от 6 до 30 В, не больше. Ток на выходе схемы зависит от номинала данного конденсатора. При ёмкости в 1 мкФ ток будет в районе 70 мА. Не следует увеличивать ёмкость конденсатора больше 0, 5 мкФ, поскольку довольно большой ток, конечно же, спалит стабилитрон. Данная схема хороша тем, что она малогабаритна, можно собрать из подручных средств. Но недостатком является то, что она не имеет гальванической развязки с сетью. Если вы собираетесь её применять, то обязательно в закрытом корпусе, чтобы не дотрагиваться до высоковольтных частей схемы. И, конечно же, не стоит связывать с этой схемой большие надежды, поскольку выходной ток схемы небольшой. То есть, хватит на запитку маломощный устройств, током до 50 мА. В частности, запитки светодиодов и постройки светодиодных светильников и ночников. Первый запуск обязательно делать последовательно соединённой лампочкой.

В данном варианте присутствует резистор на 300 Ом, который в случае чего выйдет из строя. У нас на плате уже нет данного резистора, поэтому добавили лампочку, которая будет чуть-чуть гореть во время работы нашей схемы. Для того, чтобы проверить выходное напряжение, будем использовать самый обыкновенный мультиметр, измеритель постоянный 20 В. Подключаем схему в сеть 220 В. Поскольку у нас есть защитная лампочка, она спасёт ситуацию, если будут какие-то проблемы в схеме. Соблюдайте предельную осторожность во время работы с высоким напряжением, поскольку всё-таки на схему поступает 220 В.

Заключение.

На выходе 4,94, то есть почти 5 В. При токе не более 40-50 мА. Отличный вариант для маломощных светодиодов. Можно запитать от данной схемы светодиодные линейки, только при этом заменить стабилизатор на 12-вольтовый, к примеру, 7812. В принципе, можно на выходе получить любое напряжение в пределах разумного. На этом всё. Не забывайте подписаться на канал и оставлять свои отзывы про дальнейшие видеоролики.

Внимание! Когда собран блок питания, важно разместить сборку в пластиковый корпус либо тщательно изолировать все контакты и провода для исключения случайного прикосновения к ним, так как схема подключена к сети 220 вольт и это повышает вероятность удара током! Соблюдайте осторожность и ТБ!

бестрансформаторный блок питания своими руками

Это достаточно простая схема бестрансформаторного блока питания . Устройство выполнена на доступных элементах и в предварительной наладке не нуждается. В качестве диодного выпрямителя использован готовый мост серии КЦ405В (Г), также можно использовать любые диоды с напряжением не менее 250 вольт.

Электросхема показана на рисунке:


Неполярный конденсатор подобрать на 400-600 вольт, от его емкости зависит сила тока на выходе. Резистор с сопротивлением от 75 до 150 килоом. После диодного моста напряжение порядка 100 вольт, его нужно уменьшит. Для этих целей использован отечественный стабилитрон серии Д814Д.


После стабилитрона уже получаем напряжение 9 вольт, можно также использовать буквально любые стабилитроны на 6-15 вольт. На выходе использован типовой микросхемный стабилизатор на 5 вольт, вся основная нагрузка лежит именно на нем, поэтому стабилизатор следует прикрутить на небольшой теплоотвод, желательно заранее намазав термопастой.


Полярные конденсаторы предназначены для гашения и фильтрации сетевых помех . Устройство работает очень стабильно , но имеет всего один недостаток - малый выходной ток. Ток можно увеличить подбором конденсатора и резистора, в токогасящей цепи.

Устройство сейчас активно используется для маломощных конструкций. Выходной ток достаточно велик, чтобы зарядить мобильный телефон, питать светодиоды и небольшие лампы накаливания. Видео с экспериментами и замерами приводим ниже: