Источник тока

Рисунок 2.1 - Обозначение на схемах источника тока

Исто́чник то́ка (также генератор тока ) - двухполюсник , который создаёт ток , не зависящий от сопротивления нагрузки, к которой он присоединён. В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к , чем к источнику тока.

На рисунке 1 представлена схема замещения триполярного транзистора, содержащая источник тока (с указанием S·U бэ; стрелка в кружке указывает положительное направление тока источника тока), генерирующий ток S·U бэ, т. е. ток, зависящий от напряжения на другом участке схемы.

Свойства

Идеальный источник тока

Применение

Реальные генераторы тока имеют различные ограничения (например по напряжению на его выходе), а также нелинейные зависимости от внешних условий. Например, реальные генераторы тока создают электрический ток только в некотором диапазоне напряжений, верхний порог которого зависит от напряжения питания источника. Таким образом, реальные источники тока имеют ограничения по нагрузке.

Источники тока широко используются в аналоговой схемотехнике , например, для питания измерительных мостов , для питания каскадов дифференциальных усилителей , в частности операционных усилителей .

Концепция генератора тока используется для представления реальных электронных компонентов в виде эквивалентных схем . Для описания активных элементов для них вводятся эквивалентные схемы, содержащие управляемые генераторы:

  • Источник тока, управляемый напряжением (сокращенно ИТУН)
  • Источник тока, управляемый током (сокращенно ИТУТ)

Давайте попробуем разобраться, что же все таки называют источником тока и как он обозначается в различных схемах.

Обычно источник тока условно отображается так, как указано на рисунке ниже:

При этом на схемах он изображается следующим образом:

Здесь изображен источник тока в составе генератора тока , собранного с использованием биполярных транзисторов.

Источником или генератором тока обычно называют двухполюсник, создающий ток, который не зависит от присоединенного к нему сопротивлению нагрузки. И часто такое название дают любому источнику электрического напряжения (розетке, генератору, батарее и т.п.). Но если говорить только в физическом смысле, такое обозначение нельзя называть правильным, наоборот - источники напряжения, применяемые для бытовых целей, скорее можно назвать источниками ЭДС.

На вышеуказанной схеме содержится источник тока в составе схемы замещения триполярного транзистора. Стрелка служит указателем положительного направления тока. При этом ток, генерируемый этим источником, зависит от напряжения на другом участке данной схемы.

Разница между идеальным и реальным источниками тока.

Идеальный источник тока имеет напряжение на клеммах, зависящее только от того, какое сопротивление возникает на внешней цепи: U=L*R

Чтобы определить, какую мощность источник тока отдает в сеть, используется следующая формула: P=L 2 *R

При этом следует учитывать следующее уравнение: L= const

Это позволяет понять, что мощность и напряжение, выделяемые источником тока, будут неограниченно расти, если будет расти сопротивление.

Реальный источник тока в линейном приближении можно описать внутренним сопротивлением. В этом он очень схож с обычным . Различие между ними состоит в следующем: с увеличением внутреннего сопротивления источник тока приближается по параметрам к идеальному, а источник ЭДС приближается к идеальному по мере того, как внутреннее сопротивление уменьшается.

Реальный источник тока с показателем внутреннего сопротивления r и реальный источник ЭДС будут эквивалентными при соблюдении условия:

Реальный источник тока будет иметь напряжение на клеммах:

При силе тока, равной:

И мощности, определяемой по формуле:

Катушку индуктивности, по которой на протяжении некоторого времени проходил ток от внешнего источника после его отключения, можно назвать источником тока.

Это объясняет искрение контактов, происходящее, когда индуктивная нагрузка быстро отключается. Пробой зазора возникает из-за сохранения тока при резком увеличении уровня сопротивления.

Если первичная обмотка трансформатора подключена к мощной линии переменного тока , его вторичную обмотку можно рассматривать как идеальный источник тока , но переменного, а не постоянного, что приводит к невозможности размыкания его вторичной цепи. Это значит, что вторичная обмотка должна быть шунтирована.

Реальный генератор обладает рядом ограничений, среди которых следует отметить одно - ограничение по напряжению на выходе. Например, реальный источник тока работает только с тем диапазоном напряжений, верхний порог которого зависит от того, каким будет напряжение, питающее источник. Это приводит к наличию некоторых ограничений по нагрузке.

Такой источник тока нашел широкое применение во многих сферах. Например, для работы в паре с дифференциальными усилителями и измерительными мостами в аналоговой схемотехнике.

Когда говорят об использовании электрической энергии в быту, на производстве или транспорте, то имеют в виду работу электрического тока. Электрический ток подводят к потребителю от электростанции по проводам. Поэтому, когда в домах неожиданно гаснут электрические лампы или прекращается движение электропоездов, троллейбусов, говорят, что в проводах исчез ток.

Что же такое электрический ток и что необходимо для его возникновения и существования в течение нужного нам времени?

Слово «ток» означает движение или течение чего-то.

Что может перемещаться в проводах, соединяющих электростанцию с потребителями электрической энергии?

Мы уже знаем, что в телах имеются электроны, движением которых объясняются различные электрические явления (см. § 30). Электроны обладают отрицательным электрическим зарядом. Электрическими зарядами могут обладать и более крупные частицы вещества - ионы. Следовательно, в проводниках могут перемещаться различные заряженные частицы.

    Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием этого поля заряженные частицы, которые могут свободно перемещаться в проводнике, придут в движение в направлении действия на них электрических сил. Возникнет электрический ток.

Чтобы электрический ток в проводнике существовал длительное время, необходимо всё это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создаётся и может длительное время поддерживаться источниками электрического тока .

Источники тока бывают различные, но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Разделённые частицы накапливаются на полюсах источника тока. Так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, другой - отрицательно. Если полюсы источника соединить проводником, то под действием электрического поля свободные заряженные частицы в проводнике начнут двигаться в определённом направлении, возникнет электрический ток.

Рис. 44. Электрофорная машина

Рис. 45. Превращение внутренней энергии в электрическую

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение механической, внутренней или какой-нибудь другой энергии в электрическую. Так, например, в электрофорной машине (рис. 44) в электрическую энергию превращается механическая энергия. Можно осуществить и превращение внутренней энергии в электрическую. Если две проволоки, изготовленные из разных металлов, спаять, а затем нагреть место спая, то в проволоках возникнет электрический ток (рис. 45). Такой источник тока называется термоэлементом . В нём внутренняя энергия нагревателя превращается в электрическую энергию. При освещении некоторых веществ, например селена, оксида меди (I), кремния, наблюдается потеря отрицательного электрического заряда (рис. 46). Это явление называется фотоэффектом . На нём основано устройство и действие фотоэлементов . Термоэлементы и фотоэлементы изучают в курсе физики старших классов.

Рис. 46. Превращение энергии излучения в электрическую

Рассмотрим более подробно устройство и работу двух источников тока - гальванического элемента и аккумулятора , которые будем использовать в опытах по электричеству.

В гальваническом элементе (рис. 47, а) происходят химические реакции, и внутренняя энергия, выделяющаяся при этих реакциях, превращается в электрическую. Изображённый на рисунке 47, б элемент состоит из цинкового сосуда (корпуса) Ц. В корпус вставлен угольный стержень У, у которого имеется металлическая крышка М. Стержень помещён в смесь оксида марганца (IV) Мn0 2 и размельчённого углерода С. Пространство между цинковым корпусом и смесью оксида марганца с углеродом заполнено желеобразным раствором соли (хлорида аммония NH 4 CI) P.

Рис. 47. Гальванический элемент (батарейка)

В ходе химической реакции цинка Zn с хлоридом аммония NH4CI цинковый сосуд становится отрицательно заряженным.

Оксид марганца несёт положительный заряд, а вставленный в него угольный стержень используется для передачи положительного заряда.

Между заряженными угольным стержнем и цинковым сосудом, которые называются электродами , возникает электрическое поле. Если угольный стержень и цинковый сосуд соединить проводником, то по всей длине под действием электрического поля свободные электроны придут в упорядоченное движение. Возникнет электрический ток.

Гальванические элементы - самые распространённые в мире источники постоянного тока. Их достоинством является удобство и безопасность в использовании.

В быту часто применяют батарейки, которые можно подзаряжать многократно, - аккумуляторы (от лат. аккумуляторе - накоплять). Простейший аккумулятор состоит из двух свинцовых пластин (электродов), помещённых в раствор серной кислоты.

Чтобы аккумулятор стал источником тока, его надо зарядить. Для зарядки через аккумулятор пропускают постоянный ток от какого-нибудь источника. В процессе зарядки в результате химических реакций один электрод становится положительно заряженным, а другой - отрицательно. Когда аккумулятор зарядится, его можно использовать как самостоятельный источник тока. Полюсы аккумуляторов обозначены знаками « + » и « - ». При зарядке положительный полюс аккумулятора соединяют с положительным полюсом источника тока, отрицательный - с отрицательным полюсом.

Кроме свинцовых, или кислотных, аккумуляторов широко применяют железоникелевые, или щелочные, аккумуляторы. В них используется раствор щёлочи и пластины - одна из спрессованного железного порошка, вторая - из пероксида никеля. На рисунке 48 изображён современный аккумулятор.

Рис. 48. Аккумулятор

Аккумуляторы имеют широкое и разнообразное применение. Они служат для питания сети освещения железнодорожных вагонов, автомобилей, для запуска автомобильного двигателя. Батареи аккумуляторов питают электроэнергией подводную лодку под водой. Радиопередатчики и научная аппаратура на искусственных спутниках Земли также получают электропитание от аккумуляторов, установленных на спутнике.

а - мобильного телефона; б - ноутбука

На электростанциях электрический ток получают с помощью генераторов (от лат. генератор - создатель, производитель). Этот электрический ток используется в промышленности, на транспорте, в сельском хозяйстве.

Вопросы

  1. Что такое электрический ток?
  2. Что нужно создать в проводнике, чтобы в нём возник и существовал ток?
  3. Какие превращения энергии происходят внутри источника тока?
  4. Как устроен сухой гальванический элемент?
  5. Что является положительным и отрицательным полюсами батареи?
  6. Как устроен аккумулятор?
  7. Где применяются аккумуляторы?

Задание

  1. С помощью Интернета найдите, какие существуют типы зарядных устройств и выделите их особенности.
  2. Подготовьте презентацию о применении аккумуляторов.

Электрический ток - направленное, упорядоченное движение электрических зарядов.

Электрические заряды могут быть разными. Это могут быть электроны или ионы (положительно или отрицательно заряженные).
Чтобы получить электрический ток в проводнике, надо создать в нём электрическое поле. Под действием поля электрические заряды начнут перемещаться, возникнет электрический ток.

Обрати внимание!

Условия существования электрического тока:

Наличие свободных электрических зарядов;
наличие электрического поля, которое обеспечивает движение зарядов;
замкнутая электрическая цепь.

Электрическое поле создают источники электрического тока.

Источник тока - это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.

В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

Механический источник тока - механическая энергия преобразуется в электрическую энергию. Сюда относятся: электрофорная машина, динамо-машина, генераторы.

Диски электрофорной машины приводятся во вращение в противоположных направлениях. В результате трения щёток о диски на кондукторах машины накапливаются заряды противоположного знака.

Тепловой источник тока - внутренняя энергия преобразуется в электрическую энергию.

К нему относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появляется напряжение.

Световой источник тока - энергия света преобразуется в электрическую энергию. Сюда относится фотоэлемент.

При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

Химический источник тока - в результате химических реакций внутренняя энергия преобразуется в электрическую.
К нему относится, например, гальванический элемент.

В цинковый сосуд Ц вставлен угольный стержень У, у которого имеется металлическая крышка М. Стержень помещён в полотняный мешочек, наполненный смесью оксида марганца с углём С. Пространство между цинковым корпусом и смесью оксида марганца с углём заполнено желеобразным раствором соли Р. В результате химической реакции цинк приобретает отрицательный заряд, а угольный стержень - положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле. В таком источнике тока уголь является положительным электродом, а цинковый сосуд - отрицательным электродом.

Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют батарейки, которые можно подзаряжать многократно. Их называют аккумуляторами.

Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Если обе пластины соединить с полюсами какого-либо источника электрической энергии, то электрический ток, проходя через раствор, зарядит один электрод положительно, а другой - отрицательно. Такие аккумуляторы называют кислотными или свинцовыми. Кроме них ещё существуют щелочные или железоникелевые аккумуляторы. В них используется раствор щёлочи и пластины: одна - из спрессованного железного порошка, а вторая - из пероксида никеля.
Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Наряду с источниками тока существуют различные потребители электроэнергии: лампы, пылесосы, компьютеры и многие другие. Чтобы электроэнергию доставить от источника до потребителя, необходимы соединительные проводники, а чтобы её поступлением можно было управлять, нужны рубильники, выключатели, кнопки и т.д.

Обрати внимание!

Источник электроэнергии, потребители электроэнергии, замыкающие устройства, соединённые между собой проводами, называют электрической цепью.

Чтобы в цепи существовал электрический ток, она должна быть замкнутой, т.е. состоять из проводников электричества. Если в каком-либо месте провод разорвётся, то ток в цепи прекратится. На этом основано действие выключателей.

Обрати внимание!

Чертежи, на которых изображаются способы соединения электрических приборов в цепь, называют схемами.

Приборы на схемах обозначают условными знаками. Вот некоторые из них:

Гальванический элемент или аккумулятор

Батарея элементов и аккумуляторов

Электрическая лампочка накаливания

Электрический звонок

Резистор

Двигатель

Генератор

Пересечение проводов без соединения

Соединение проводов

План реферата

1. Что такое электрический ток.
Основные понятия и термины.

3. Историческая справка.



7. Заключение.
1. Что такое электрический ток.

В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток - это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.
Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Гильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон - «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».
Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно.
В первом случае тела называют «проводники», а во втором - «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.
Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле.
Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока - это когда один конец провода соединен с наэлектризованным телом, а другой - с землей.
Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.

1.1. Основные пояснения и термины.

Электротехника - это область науки и техники, изучающая электрические и магнитные явления и их использование в практических целях.
Каждая наука имеет свою терминологию. Запомним термины, понятия электротехники.
Электрическая цепь - это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.
Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы.

1. Источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).
2. Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электромеханизмы и т.д.).
3. Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

Направленное движение электрических зарядов называют электрическим током. Электрический ток может возникать в замкнутой электрической цепи. Электрический ток, направление и величина которого неизменны, называют постоянным током и обозначают прописной буквой I.

Электрический ток, величина и направление которого не остаются постоянными, называется переменным током. Значение переменного тока в рассматриваемый момент времени называют мгновенным и обозначают строчной буквой i.
Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток.

Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными - электрические цепи, не содержащие источников энергии.

2. Что такое источники электрического тока.

Источниками электрического тока являются батареи, аккумуляторы, динамо-машины, различные виды генераторов и т. д. Они производят электроэнергию за счет какого-нибудь другого вида энергии, например, химической, механической, тепловой и пр. Следовательно, и в случаях с источниками электрического тока закон сохранения энергии остается в силе.
Каждый источник тока имеет свойство при замыкании цепи создавать в про¬водниках электрическое поле, которое с определенной силой действует на свободные электроны. Поэтому говорят, что каждый источник тока имеет определенную элек¬тродвижущую силу (ЭДС).
Источники электрического тока электронов не производят, но созданное ими электрическое поле приводит в движение свободные электроны, на¬ходящиеся в самих проводниках. В этом отношении любой источник тока можно сравнить с насосом, который приводит в движение воду в замкнутой системе труб. Насос передает энергию турбине так же, как батарейка передает энергию лампочке.
Очевидно, в любой неразветвленной системе количество воды, проте¬кающей в толстых и тонких трубах за единицу времени, одно и то же. только по тонким трубам частицы воды движутся с большей скоростью. По аналогии можно сказать, что величина тока в неразветвленной электрической цепи везде одна и та же, только в проводниках большего диаметра электроны движутся медленнее, чем в более тонких проводниках.
Электрическая энергия может быть получена за счет преобразования химической энергии (в гальванических элементах и аккумуляторах), преобразования тепловой энергии угля (тепловые электростанции), преобразования механической энергии рек и энергии ветра (гидро- и ветроэлектростанции), преобразования тепловой энергии, выделяющейся при распаде ядер урана (атомные элек¬тростанции), за счет непосредственного превращения атомной энергии в электрическую (атомные батареи), за счет непосредственного превращения солнечной энергии в электрическую (солнечные батареи) и, наконец, за счет непосредственного превращения тепловой энергии в элек¬трическую (термоэлектробатареи, термоэлектрогенера¬торы).

3. Историческая справка.

XVI столетие знаменуется началом исследования электричества. На протяжении 17 лет английский ученый Вильям Гилберт исследует магнетизм и, в некоторой степени, электричество. Его исследования оказали огромное влияние на развитие знаний о магнетизме и электричестве. Он стал известен как «Отец магнетизма». Гильберт обнаружил довольно много веществ, которые, как и янтарь, могут притягивать мелкие кусочки материи и пылинки.
Манипулируя с этими и подобными веществами в 1633г, любознательный бургомистр немецкого города Магдебурга Отто фон Герике изготовил странную машину – это был шар из серы, приводимый во вращение несложным механизмом.
Вращающийся шар касался металлической цепочки, присоединенной к длинному металлическому бруску, подвешенному на веревках. Если шар при вращении придерживали ладонями, то на нем накапливался значительный электрический заряд, отводимый цепочкой к бруску.
Шары из серы изготовляли следующим образом: из стекла выдували тонкий шарообразный сосуд, в который заливали расплавленную серу. Когда сера остывала, стекло разбивали и получали шар из серы. (К сожалению, Герике слишком уважал ученых своего времени, чтобы вращать просто стеклянный шар. Ему нужен был шар из серы, поскольку именно о ней писал Гильберт. Об электрических свойствах стекла было тогда известно очень мало. А ведь если бы бургомистр попробовал тереть ладонями стеклянный шар, он бы получил более мощную машину!) С помощью шара из серы Отто фон Герике удалось провести очень эффектные опыты: при трении шара о ладони между руками и бруском проскакивали искры, причем некоторые из них были довольно крупными.
Машина Герике получила сразу же очень широкое распространение, и неудивительно, что с ее помощью удалось обнаружить много электрических эффектов. Это был один из первых электростатических генераторов.
Один из необычных случаев произошел в знаменитой Лейденской лаборатории. Студент по имени Канеус использовал машину Герике для того, чтобы «зарядить электричеством» воду в стеклянной колбе, которую он держал в ладонях. Зарядка осуществлялась при помощи цепочки, подсоединенной к бруску машины. Цепочка спускалась через горлышко колбы в воду. По истечении некоторого времени Канеус решил убрать свободной рукой цепочку – вынуть ее из сосуда. Прикоснувшись к цепочке, он получил страшный электрический удар, от которого чуть не умер. Оказалось, что в сосудах такого типа электричество может накапливаться в очень больших количествах. Таким образом была открыта так называемая лейденская банка – простейший конденсатор.
Сведения о новом изобретении быстро распространились по Европе и Америке. Во всех лабораториях и аристократических салонах ставились удивительные опыты, одновременно неприятные, забавные и таинственные.
Столица Франции, естественно, не осталась в стороне от этого «лейденского поветрия». Придворный электрик Людовика XVI иезуит Нолле провел такой опыт: сто восемьдесят монахов взялись за руки. В тот момент, когда первый монах взялся за головку банки, все 180 монахов, сведенные одной судорогой, вскрикнули с ужасом. Несмотря на неприятное ощущение, тысячи людей хотели подвергнуться этому испытанию. Изготовлялись новые банки, более мощные.
Лейденская банка стала одним из необходимейших атрибутов многих исследований. С ее помощью можно было получить электрические искры длиной в несколько сантиметров.
И на родине Гильберта продолжались исследования электричества. Этим занимался Ньютон, его лаборант научился передавать заряд лейденской банки по влажной веревке.
Наиболее дальновидному исследователю пришла в голову мысль о том, что и сверкающая молния, раскалывающая грозовое небо, – это грандиозная электрическая искра, полученная с помощью исполинской лейденской банки... Этим исследователем оказался американец Бенджамин Франклин.
Физикой он заинтересовался после того, как прослушал лекцию по электричеству, на которой была показана электрическая искра и продемонстрировано неприятное действие на человека разряда лейденской банки. Пользуясь словами батарея, конденсатор, проводник, заряд, разряд, обмотка, мы вряд ли помним о том, что Франклин был первым, кто дал названия всем этим предметам и явлениям. Всего семь лет он занимался физикой (с 1747 по 1753 г.), но его вклад в науку оказался огромным. В последние годы жизни Франклин стал одной из выдающихся фигур в политической жизни Америки, активным борцом за освобождение ее от колониального ига Англии.
Следующим этапом стали опыты профессора анатомии Алоизо Луиджи Гальвани. Одну из отпрепарированных лягушек Гальвани по рассеянности положил на стол рядом с электрической машиной. В это время в комнату вошла жена Гальвани. Ее взору предстала жуткая картина: при искрах в электрической машине лапки мертвой лягушки, прикасавшиеся к железному предмету (скальпелю), дергались. Гальвани был поражен и решил, что причина этого – электрические искры. Для того чтобы получить более сильный эффект, он вывесил несколько препарированных лягушек на медных проволочках на железный балкон во время грозы. Однако не только молнии – гигантские электрические разряды – влияли на поведение лягушек. При порывах ветра лягушки раскачивались на своих проволочках и иногда касались железного балкона. Как только это случалось, лапки дергались.
Понять, почему лапки мертвых лягушек дергаются, Гальвани не было суждено. Лишь великий Алессандро Вольта понял, что соединение разных металлических проводников (у Гальвани медная проволока была привязана к железному балкону) само по себе вызывает появление на их концах электрических зарядов. Если замкнуть концы через тело лягушки, образуется электрический ток, который является не кратковременным, как при «страшных опытах» Отто фон Герике, а длительным. О природе этого тока у Вольта с Гальвани был очень серьезный спор: Гальвани был уверен, что источником тока является сама лягушка, а Вольта считал, что первопричина тока – соединение двух разных металлов.
Хотя в споре Гальвани оказался не прав, он тем не менее заложил основы учения о биотоках организма.
Вольта ставил совсем другие опыты – он скептически относился к теории «животного электричества» Гальвани. Иногда его можно было увидеть за странным занятием: он брал две монеты или два кружочка – обязательно из разных металлов – и... клал их себе в рот: одну на язык, другую под язык. Если после этого монеты или кружочки соединяли проволочкой, Вольта чувствовал солоноватый вкус – тот самый вкус, но гораздо слабее, что можем почувствовать мы, лизнув одновременно два контакта батарейки. Из опытов, проведенных раньше с машиной Герике и электрофором, Вольта знал, что такой вкус вызывается электричеством. Положив один на другой множество кружков (свыше ста), Вольта получил довольно мощный источник электричества – вольтов столб. Присоединив к верхнему и нижнему концам столба проводнички и взяв их в рот, Вольта убедился в том, что этот источник, в отличие от машины Герике и электрофора, действует длительно.
Вслед за этим Вольта сделал еще одно изобретение – он создал электрическую батарею, пышно названную «короной сосудов» и состоявшую из многих последовательно соединенных цинковых и медных пластин, опущенных попарно в сосуды с разбавленной кислотой. Это был уже довольно солидный источник электрической энергии (солидный, конечно, по тем временам; сейчас с помощью «короны сосудов» можно было бы привести в действие разве что электрический звонок).
20 марта 1800 г. Вольта сделал доклад о своих исследованиях в Лондонском Королевском обществе. Можно считать, что с этого дня источники постоянного электрического тока – вольтов столб и батарея – стали известны многим физикам и их начали широко применять.
России тоже довольно быстро узнали об открытии Вольта. Одна из самых гигантских и мощных электрических батарей того времени, состоящая из 3000 «кружков», была построена русским профессором В.В. Петровым, открывшим с помощью этой батареи прославившую его электрическую дугу.

Уже в 1808 г. известный английский физик сэр Гемфри Дэви осуществил электрическое дуговое освещение на практике. Электричество начало свое победное шествие по всему миру. Особенно быстро развивалось электрическое освещение.
Электричество уже до этого прочно вошло в обиход физических лабораторий. С ним проводились многочисленные опыты на животных, с его помощью получали дугу и миниатюрные молнии – искры, но теперь слово «электричество» вошло в лексикон простых людей.

4. Современные источники электрического тока.

Источники тока, устройства, преобразующие различные виды энергии в электрическую. По виду преобразуемой энергии источники тока условно можно разделить на химические и физические.

Сведения о первых химических источниках тока (гальванических элементах и аккумуляторах) относятся к 19 в. (например, батарея Вольта). Однако вплоть до 40-х гг. 20 в. в мире было разработано и реализовано в конструкциях не более 5 типов гальванических пар. С середины 40-х гг. вследствие развития радиоэлектроники и широкого использования автономных источников тока создано ещё около 25 типов гальванических пар. Теоретически в источниках тока может быть реализована свободная энергия химических реакций практически любого окислителя и восстановителя, а следовательно, возможна реализация несколько тысяч гальванических пар.

Принципы работы большинства физических источников тока были известны уже в 19 в. В дальнейшем вследствие быстрого развития и совершенствования турбогенераторы и гидрогенераторы стали основными промышленными источниками электроэнергии. Физические источники тока, основанные на других принципах, получили промышленное развитие лишь в 50-60-х гг. 20 в., что обусловлено возросшими и достаточно специфическими требованиями современной техники. В 60-х гг. технически развитые страны уже имели промышленные образцы термогенераторов, термоэмиссионных генераторов (СССР, ФРГ, США), атомных батарей (Франция, США, СССР).

5. Химические источники электрического тока.

Химическими источниками тока принято называть устройства, вырабатывающие электрический ток за счёт энергии окислительно-восстановительных реакций химических реагентов. В соответствии с эксплуатационной схемой и способностью отдавать энергию в электрическую сеть химические источники тока подразделяются на первичные, вторичные и резервные, а также электрохимические генераторы.
Первичные источники тока (гальванические элементы и батареи) допускают, как правило, однократное использование энергии химических реагентов. Отдельные конструкции гальванических элементов и батарей разрешают кратковременное повторное использование энергии реагентов после электрической подзарядки. Положительный (катод) и отрицательный (анод) электроды, разделённые электролитом в жидком или пастообразном состоянии или же пористой мембраной-сепаратором с поглощённым в ней электролитом, электрически связаны (гальваническая связь) в течение всего срока службы источника тока.
Вторичные источники тока (отдельные аккумуляторы и аккумуляторные батареи) допускают многократное (сотни и тысячи заряд-разрядных циклов) использование энергии составляющих химических реагентов. Электроды и электролит весь срок службы аккумуляторов находятся в электрическом контакте друг с другом. Для увеличения ресурса аккумуляторов в некоторых специфических условиях эксплуатации разработаны способы сухозаряженного хранения аккумуляторов. Такие аккумуляторы перед включением предварительно заливают электролитом.
Резервные источники тока допускают только однократное использование энергии химических реагентов. В отличие от гальванических элементов и аккумуляторов, в резервных источниках тока электролит при хранении никогда гальванически не связан с электродами. Он хранится в жидком состоянии (в стеклянных, пластмассовых или металлических ампулах) либо в твёрдом (но неэлектропроводном) состоянии в межэлектродных зазорах. При подготовке к работе резервных источников тока, ампулы разрушают сжатым воздухом, взрывом, а кристаллы твёрдого электролита расплавляют с помощью электрического или пиротехнического разогрева. Резервные источники тока применяют для питания электрической аппаратуры, которая долгое время может (вынуждена) находиться в резервном (неработающем) состоянии. Срок хранения современных резервных источников тока превышает 10-15 лет.

6. Физические источники электрического тока.

Физическими источниками тока называют устройства, преобразующие тепловую, механическую, электромагнитную энергию, а также энергию радиационного излучения и ядерного распада в электрическую. В соответствии с наиболее часто употребляемой классификацией к физическим источникам тока относят: электромашинные генераторы, термоэлектрические генераторы, термоэмиссионные преобразователи, МГД-генераторы, а также генераторы, преобразующие энергию солнечного излучения и атомного распада.
Электромашинные генераторы, преобразующие механическую энергию в электрическую, - наиболее распространённый вид источников электрической энергии, основа современной энергетики. Они могут быть классифицированы по мощности (от долей вт до сотен Мвт), по назначению и особенностям эксплуатации (стационарные, транспортные, резервные и т. д.), по роду первичного двигателя (дизель-генераторы, турбо- и гидрогенераторы), по рабочему телу (пар, вода, газ) и т. д.
Благодаря длительному периоду теоретического, конструктивного и технологического совершенствования характеристики этого типа источников тока достигли значений, близких к предельным.
Работа термоэлектрического генератора (ТЭГ) основана на использовании эффекта Зеебека. Рабочим материалом в ТЭГ служат автономные источники питания (на транспорте, в технике связи, медицине), антикоррозионная защита (на магистральных трубопроводах) и др.
Принцип работы термоэмиссионного преобразователя (ТЭП) основан на использовании термоэмиссионного эффекта (испускание электронов поверхностью нагретого металла). Термоэмиссионный поток электронов зависит главным образом от температуры и свойств поверхности материала. Кпд отдельных лабораторных образцов ТЭП достигает 30%, а действующих энергетических установок 15% (при электрической мощности, снимаемой с единицы поверхности катода, - 30 вт/см2). Наиболее перспективно применение ТЭП в качестве автономных источников электроэнергии большой мощности (до 100 квт).
Принцип действия источников тока, преобразующих энергию солнечного излучения, основан на использовании внутреннего фотоэффекта. Фотоэлектрический генератор (солнечная батарея) представляет собой совокупность вентильных фотоэлементов, преобразующих энергию солнечного излучения в электрическую. Практически прямое преобразование энергии солнечного излучения стало возможно лишь после создания в 1953 высокоэффективного фотоэлемента из монокристаллического кремния. Лучшие образцы кремниевых фотоэлементов имеют кпд около 15%; срок службы их практически неограничен. Солнечные батареи применяются в космической технике, где они занимают доминирующее положение как источники энергии на искусственных спутниках Земли, орбитальных станциях и космических кораблях, а также для снабжения электроэнергией удалённых от линии электропередачи районов с большим числом солнечных дней в году. Солнечные батареи признаны одним из самых экологически чистых источников электрического тока.

7. Заключение.

Технический прогресс, проникновение электротехники и электроники на транспорт, в быт, медицину и т. д. стимулировали разработку автономных источников электропитания, среди которых химические источники тока в количественном отношении заняли видное место, став продукцией массового потребления. Переносные осветительные приборы, магнитофоны и радиоприёмники, телевизоры и переносная медицинская аппаратура, средства ж.-д. транспорта, автомобили, тракторы, самолёты, искусственные спутники, космические корабли, средства связи и многое другое оснащены малогабаритными источниками тока.
Теория источников тока предусматривает исследование всех стадий процесса генерирования электрического тока на основе современных представлений о физике твёрдого тела, жидкости и газа, о процессах переноса зарядов и электрохимических реакциях. Теория источников тока изучает также вопросы оптимизации, включающие как выбор исходных параметров, обеспечивающих оптимальные выходные характеристики источников тока, так и разработку методов прогнозирования характеристик будущих источников тока. К важнейшим характеристикам источников тока относятся: кпд, энергоёмкость (или удельная энергоёмкость), мощность (или удельная мощность, отнесённая к единице массы, объёма и т. д.), срок службы, качество генерируемой электроэнергии и многое другое.