Клавишный электромузыкальный инструмент, схема которого показана на рисунке 1 сделан на одной микросхеме К561ЛА7, содержащей четыре логических элемента. Клавиатура состоит из двух блоков по 12 кнопок - клавиш в каждом. Каждый блок управляет одним голосом инструмента.
На элементах D1.1 и D1.2 сделан мультивибратор, вырабатывающий частоты от 988 Гц до 523 Гц.

С помощью кнопок клавиш S2 S13 можно выбирать такие частоты. 988Гц, 932Гц, 880Гц, 831 Гц, 784Гц, 740Гц. 698Гц, 659Гц, 622 Гц. 587Гц, 554 Гц и 523Гц. Это соответствует тонам: «Си» второй октавы, «Си-бемоль», «Ля». «Ля-бемоль», «Соль», «Соль-бемоль», «Фа», «Ми», «Ми-бемоль», «Ре». «Ре бемоль» и «До».

Частота колебаний на выходе мультивибратора зависит от емкости конденсатора С2 и сопротивления между входом и выходом элемента D1.1. Это сопротивление зависит от того какая из кнопок S2-S13 нажата, и какие из резисторов R2-R25 будут включены этой кнопкой.

Колебания с выхода мультивибратора через диод VD1 и резистор R27 поступают на базу усилителя на транзисторе V11, в коллекторной цепи которого есть динамик В1.

В микросхеме K561ЛA7 есть четыре логических элемента, на двух других, - D1.3 и D1.4 сделан второй мультивибратор, который почти такой же, как мультивибратор на D1.1 и D1.2, но емкость конденсатора С3 здесь больше чем С2, поэтому второй мультивибратор вырабатывает колебания тона вдвое ниже, чем первый.

Колебания с выхода мультивибратора на D1.3 и D1.4 через диод VD2 и резистор R28, так же, как и колебания первого мультивибратора, поступают на базу транзистора VT1.

Питается музыкальный инструмент от батареи напряжением 9V («Крона»). Большинство деталей расположены на небольшой односторонней печатной плате, монтажная схема и схема расположения печатных дорожек, которой показаны на рисунке 2.

Печатную плату можно сделать любым доступным способом. Дорожки могут выглядеть по-другому, например, быть шире или другой формы. Важно чтобы соединения были такими как на рисунке и не было замыканий между дорожками.

Кнопки, выключатель и динамик расположены на передней (верхней) панели пластмассовой коробки, которая служит корпусом.

Кнопки могут быть любого типа, - какие сможете приобрести. Важно чтобы они были замыкающими и без фиксации (то есть, замкнута пока держишь нажатой, а как отпустишь - размыкается). Динамик подойдет тоже практически любой, но желательно широкополосной малогабаритный, например, такой как в карманных приемниках. Подключая источник питания, будьте осторожны. так как при неправильной полярности подключения микросхема может сдохнуть.

После монтажа внимательно проверьте правильность монтажа, расположения деталей, установку микросхемы. Устанавливая микросхему помните, что ключ на её корпусе находится возле 1-го вывода или возле торца со стороны 1-го и 14-го вывода. То есть, если смотреть на рисунок 2, ключ будет слева.

При безошибочном монтаже и исправных деталях музыкальный инструмент работоспособен сразу после первого включения, но чтобы его звучание точно соответствовало нотному ряду необходимо сопротивления R2-R25 И R30-R53 подобрать при налаживании инструмента.

При этом, нужно пользоваться каким-то настроенным музыкальным инструментом, определяя ноты на слух, или частотомером измеряя частоту на выходе мультивибраторов (значения частот указаны вначале статьи).

Впрочем, серьезно относиться к данному инструменту не нужно, - это скорее игрушка, чем настоящий музыкальный синтезатор. Если все резисторы, а так же конденсаторы С2 и С3 будут именно таких номиналов, как показано на схеме, инструмент будет издавать звуки, достаточно близкие к звучанию соответствующих нот.

Сегодня мы будем делать схему так называемую «Музыкальный инструмент». Делать мы будем её на таймере NE555 , так как с микроконтроллерами не каждый знаком, да и не у всех есть возможность их приобрести, а стоимость данной микросхемки (КР1006ВИ1 ) всего 10 центов.

Для изготовления электронного музкального инструмента нам потребуется:

1. Микросхема NE555 – 1шт.

2. Резисторы: 6.8 кОм – 2 шт 4.7 кОм - 2 шт, 3.3 кОм – 2 шт, 2.2 кОм – 2 шт, 5.6 кОм – 1 шт. Использовать будем СМД, конечно можно и в ДИП корпусе, но печатнрую плату делал под СМД.

3. Керамические конденсаторы: 10 (103) нанофарад – 1 штука, 100 (104) нанофарад – 1 штука тоже.

4. Электролитический конденсатор на 22 пикофарад от 16 В.

5. Динамик 8 Ом.

6. Кнопки обычные 8 шт.

Теперь приступим к изготовлению устройства - скачайте печатную плату . Прежде всего паяем панель и керамические конденсаторы, если нету панелек - паяем микросхему напрямую.


Схемы простейших электронных устройств для начинающих радиолюбителей. Простые электронные игрушки и устройства которые могут быть полезны для дома. Схемы построены на основе транзисторов и не содержат деффицитных компонентов. Имитаторы голосов птиц, музыкальные инструменты, светомузыка на светодиодах и другие.

Генератор трелей соловья

Генератор трелей соловья, выполненный на асимметричном мультивибраторе, собран по схеме, приведенной на рис. 1. Низкочастотный колебательный контур, образованный телефонным капсюлем и конденсатором СЗ, периодически возбуждается импульсами, вырабатываемыми мультивибратором. В итоге формируются звуковые сигналы, напоминающие соловьиные трели. В отличие от предыдущей схемы звучание этого имитатора не управляемое и, следовательно, более однообраз ное. Тембр звучания можно подбирать, меняя емкость конденса тора СЗ.

Рис. 1. Генератор-иммитатор трелей соловья, схема устройства.

Электронный подражатель пения канарейки

Рис. 2. Схема электронного подражателя пения канарейки.

Электронный подражатель пения канарейки описан в книге Б.С. Иванова (рис. 2). В его основе также асимметричный мультивибратор. Основное отличие от предыдущей схемы — это RC-цепочка, включенная между базами транзисторов мультивибратора. Однако это несложное нововведение позволяет радикально изменить характер генерируемых звуков.

Имитатор кряканья утки

Имитатор кряканья утки (рис. 3), предложенный Е. Бри-гиневичем, как и другие схемы имитаторов, реализован на асимметричном мультивибраторе [Р 6/88-36]. В одно плечо мультивибратора включен телефонный капсюль BF1, а в другое — последовательно соединенные светодиоды HL1 и HL2.

Обе нагрузки работают поочередно: то издается звук, то вспыхивают светодиоды — глаза «утки». Тональность звука подбирается резистором R1. Выключатель устройства желательно выполнить на основе магнитоуправляемого контакта, можно самодельного.

Тогда игрушка будет включаться при поднесении к ней замаскированного магнита.

Рис. 3. Схема имитатора кряканья утки.

Генератор «шума дождя»

Рис. 4. Принципиальная схема генератора "шума дождя" на транзисторах.

Генератор «шума дождя», описанный в монографии В.В. Мацкевича (рис. 4), вырабатывает звуковые импульсы, поочередно воспроизводимые в каждом из телефонных капсюлей. Эти щелчки отдаленно напоминают падение капель дождя на подоконник.

Для того чтобы придать случайность характеру падения капель, схему (рис. 4) можно усовершенствовать, введя, например, последовательно с одним из резисторов канал полевого транзистора. Затвор полевого транзистора будет представлять собой антенну, а сам транзистор будет являться управляемым переменным резистором, сопротивление которого будет зависеть от напряженности электрического поля вблизи антенны.

Электронный барабан-приставка

Электронный барабан — схема, генерирующая звуковой сигнал соответствующего звучания при прикосновении к сенсорному контакту (рис. 5) [МК 4/82-7]. Рабочая частота генерации находится в пределах 50...400 Гц и определяется параметрами RC-элементов устройства. Подобные генераторы могут быть использованы для создания простейшего электромузыкального инструмента с сенсорным управлением.

Рис. 5. Принципиальная схема электронного барабана.

Электронная скрипка с сенсорным управлением

Рис. 6. Схема электронной скрипки на транзисторах.

Электронная «скрипка» сенсорного типа представлена схемой, приведенной в книге Б.С. Иванова (рис. 6). Если к сенсорным контактам «скрипки» приложить палец, включается генератор импульсов, выполненный на транзисторах VT1 и VT2. В телефонном капсюле раздастся звук, высота которого определяется величиной электрического сопротивления участка пальца, приложенного к сенсорным пластинкам.

Если сильнее прижать палец, его сопротивление понизится, соответственно возрастет высота звукового тона. Сопротивление пальца зависит также от его влажности. Изменяя степень прижатия пальца к контактам, можно исполнять незамысловатую мелодию. Начальную частоту генератора устанавливают потенциометром R2.

Электромузыкальный инструмент

Рис. 7. Схема простого самодельного электромузыкального инструмента.

Электромузыкальный инструмент на основе мультивибратора [В.В. Мацкевич] вырабатывает электрические импульсы прямоугольной формы, частота которых зависит от величины сопротивления Ra — Rn (рис. 7). При помощи подобного генератора можно синтезировать звуковую гамму в пределах одной-двух октав.

Звучание сигналов прямоугольной формы очень напоминает органную музыку. На основе этого устройства может быть создана музыкальная шкатулка или шарманка. Для этого на диск, вращаемый ручкой или электродвигателем, наносят по окружности контакты различной длины.

К этим контактам напаивают предварительно подобранные резисторы Ra — Rn, которые определяют частоту импульсов. Длина контактной полоски задает длительность звучания той или иной ноты при скольжении общего подвижного контакта.

Простая цветомузыка на светодиодах

Устройство цветомузыкального сопровождения с разноцветными светодиодами, так называемая «мигалка», украсит музыкальное звучание дополнительным эффектом (рис. 8).

Входной сигнал звуковой частоты простейшими частотными фильтрами разделяется на три канала, условно называемые низкочастотным (светодиод красного свечения); среднечастотным (светодиод зеленого. свечения) и высокочастотным (желтый светодиод).

Высокочастотная составляющая выделяется цепочкой С1 и R2. «Среднечастотная» компонента сигнала выделяется LC-фильтром последовательного типа (L1, С2). В качестве катушки индуктивности фильтра можно использовать старую универсальную головку от магнитофона, либо обмотку малогабаритного трансформатора или дросселя.

В любом случае при настройке устройства потребуется индивидуальный подбор емкости конденсаторов С1 — СЗ. Низкочастотная составляющая звукового сигнала беспрепятственно проходит через цепь R4, СЗ на базу транзистора VT3, управляющего свечением «красного» светодиода. Токи «высокой» частоты закорачиваются конденсатором СЗ, т.к. он имеет для них крайне малое сопротивление.

Рис. 8. Простая цветомузыкальная установка на транзисторах и светодиодах.

Электронная игрушка "угадай цвет" на светодиодах

Электронный автомат предназначен для отгадывания цвета включившегося светодиода (рис. 9) [Б.С. Иванов]. Устройство содержит генератор импульсов — мультивибратор на транзисторах VT1 и VT2, связанный с триггером на транзисторах VT3, VT4. Триггер, или устройство с двумя устойчивыми состояниями, поочередно переключается после каждого из пришедших на его вход импульсов.

Соответственно, поочередно высвечиваются и разноцветные светодиоды, включенные в каждое из плеч триггера в качестве нагрузки. Поскольку частота генерации достаточно высока, мигание светодиодов при включении генератора импульсов (нажатии на кнопку SB1) сливается в непрерывное свечение. Если отпустить кнопку SB1, генерация прекращается. Триггер устанавливается в одно из двух возможных устойчивых состояний.

Поскольку частота переключений триггера была достаточно велика, заранее предсказать, в каком состоянии окажется триггер, невозможно. Хотя из каждого правила есть исключения. Играющим предлагается определить (предсказать), какой именно цвет появится после очередного запуска генератора.

Либо предлагается угадать, какой цвет загорится после отпускания кнопки. При большом наборе статистики вероятность равновесного, равновероятного высвечивания светодиодов должна приблизиться к значению 50:50. Для малого числа попыток это соотношение может не выполняться.

Рис. 9. Принципиальная схема электронной игрушки на светодиодах.

Электронная игрушка "у кого лучше реакция"

Электронное устройство, позволяющее сопоставить скорость реакции двух испытуемых [Б.С. Иванов], может быть собрано по схеме, приведенной на рис. 10. Первым высвечивается индикатор — светодиод того, кто первый нажмет «свою» кнопку.

В основе устройства триггер на транзисторах VT1 и VT2. Для повторного тестирования скорости реакции питание устройства следует кратковременно отключить дополнительной кнопкой.

Рис. 10. Принципиальная схема игрушки "у кого лучше реакция".

Самодельный фототир

Рис. 11. Принципиальная схема фототира.

Светотир С. Гордеева (рис. 11) позволяет не только играть, но и тренироваться [Р 6/83-36]. Фотоэлемент (фотосопротивление, фотодиод — R3) направляют на светящуюся точку или солнечный зайчик и нажимают спусковой крючок (SA1). Конденсатор С1 разряжается через фотоэлемент на вход генератора импульсов, работающего в ждущем режиме. В телефонном капсюле раздается звук.

Если наводка неточна, и сопротивление резистора R3 велико, то энергии разряда недостаточно для запуска генератора. Для фокусировки света необходима линза.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Возможности электронных устройств воспроизводить различные звуковые эффекты широко используются при конструировании современных электромузыкальных инструментов. Музыкальные инструменты своими руками могут быть различные приставки и имитаторы, придающие необычное «электронное» звучание традиционным инструментам - гитаре, барабану, роялю.

Любой генератор звуковой частоты вырабатывает электрические колебания, которые, будучи поданными на усилитель ЗЧ, преобразуются его динамической головкой в звук. Тональность звука зависит от частоты колебаний генератора.

Если в генераторе использовать набор резисторов разных сопротивлений и включать их в частотозадающую цепь обратной связи, получится простой электромузыкальный инструмент, на котором можно исполнять несложные мелодии. Схема такого инструмента приведена на рисунке ниже.


Музыкальные инструменты своими руками. Схема генератора звукового диапазона

Генератор выполнен на транзисторах VT1 и VT2 разной структуры по общеизвестной схеме. Генерация образуется из-за положительной обратной связи между выходными и входными цепями усилительных каскадов на указанных транзисторах. Частоту генерируемых колебаний можно изменять включением в цепь обратной связи переключателем SA1 либо конденсатора С1, либо С2, а также одного из резисторов Rl - R8 (клавишами инструмента SB1 - SB8). Когда подвижный контакт переключателя находится в показанном на схеме положении, при нажатии на клавиши будут раздаваться звуки первой октавы. Если же подвижный контакт переключателя перевести в противоположное положение, можно получать звуки второй октавы. Нажимать нужно только одну из клавиш. Если же случайно окажутся нажатыми две клавиши, в цепь обратной связи включатся два параллельно соединенных резистора, и частота генератора не будет соответствовать ни одному из звуков данной октавы. Причем частота генератора будет выше, чем при нажатии любой из двух клавиш в отдельности.

Резистор R9 ограничивает максимальную частоту генератора, a R10 - наибольшую неискаженную громкость звука.

Подстроечные резисторы - СПЗ-16, постоянные - МЛТ-0,25 конденсаторы - МБМ. Транзистор VT1 может быть, кроме указанного на схеме, МП38, МП38А или другой маломощный Кремниевый транзистор структуры n-р-n со статическим коэффициентом передачи тока не менее 50. С таким же коэффициентом следует взять и транзистор VT2 - он может быть серий Г1213 - П217. Динамическая головка - мощностью 0,5 - 1 Вт, например 1ГД-18, 1ГД-28. Источник питания - батарея 3336. Выключатель и переключатель - любой конструкции. Клавиши могут быть как готовые, скажем, от детского музыкального инструмента-игрушки, так и самодельные. В любом случае под ними устанавливают контакты, например, от электромагнитных реле (лучше всего телефонных), которые будут замыкаться при нажатии на клавиши. Возможен вариант использования малогабаритных кнопок, к примеру КМ1-1. Основные детали Инструмента могут быть смонтированы на плате (рис. 82) навесным или печатным способом. Плату размещают внутри корпуса (рис. 83) произвольной конструкции. На лицевой стенке кopпуca укрепляют динамическую головку и органы управления (клавиатуру, выключатель, переключатель). Источник питания монтируют внутри корпуса или на нижней (съемной) крышке.

Настройка музыкального инструмента осуществляется своими руками с помощью установки движков подстроенных резисторов для получения соответствующего тона. Сопротивления резисторов должны быть такими, чтобы получились фиксированные тона от «до» (или «ля») первой октавы до «до» (или «ля») второй с интервалами в один тон. Настройку производят по звукам рояля, пианино, аккордеона или другого музыкального инструмента. Сначала, нажав клавишу - кнопку SB8, подбором положения движка резистора R8 настраивают генератор на частоту первого исходного тона - «до» или «ля» первой октавы (эта клавиша должна быть на левом, со стороны музыканта, конце клавиатуры). Затем нажимают клавишу SB7 и подбором положения движка резистора R7 добиваются звуча ния следующего тона - «ре» (или «си») и т. д. Небольшое смещение музыкального строя инструмента можно осуществить соответствующим подбором резистора R9.

Возможности музыкального инструмента своими руками можно расширить, использовав клавиатуру с 12 клавишами. Тогда помимо основных тонов появятся дополнительные («до диез», «ля бемоль» и др.)- Громкость звука зависит от напряжения источника питания. Увеличение его до 9 В повышает громкость, но при этом, возможно, придется укрепить мощный транзистор VT2 на небольшом радиаторе в виде П-образного уголка, согнутого из листового алюминия толщиной 1...2 мм.

Это первый музыкальный инструменты своими руками, положивший начало новому направлению в радиоэлектронике - электронной музыке (сокращенно электромузыке). Разработал его в 1921 г. молодой петроградский физик Лев Термен. По имени изобретателя и был назван необычный электромузыкальный инструмент. Необычен же он тем, что не имеет клавиатуры, струн или труб, с помощью которых получают звуки нужной тональности. Игра на терменвоксе напоминает выступление фокусника-иллюзиониста - самые разнообразные мелодии звучат из динамической головки при едва заметных манипуляциях одной или двумя руками вблизи металлического прутка-антенны, торчащего на корпусе инструмента.

Секрет терменвокса в том, что в нем находятся два независимых генератора, вырабатывающих колебания весьма высокой частоты - около сотни тысяч герц. Но частоту одного из генераторов можно изменять своеобразным переменным конденсатором, образуемым рукой играющего и металлическим штырем-антенной, соединенной с частотозадающей цепью генератора. Приближение руки к антенне или удаление ее приводит к изменению суммарной емкости частотозадающей цепи, а значит, частоты генератора.

Сигналы обоих генераторов подаются на смеситель. На выходе смесителя выделяется разностный сигнал, который усиливается усилителем ЗЧ и воспроизводится динамической головкой. В исходном состоянии частоты обоих генераторов одинаковые, разностного сигнала практически нет, звука не слышно. Но стоит приблизить к антенне руку, как разностный сигнал появляется и в головке раздается звук. Тональность его изменяют рукой, приближаемой к антенне или удаляемой от нее.



Музыкальные инструменты своими руками. Схема Терменвокса

Таков принцип работы любого терменвокса. Разница между конструкциями заключается в схемотехническом решении отдельных узлов - генератора, смесителя, усилителя, а также в наличии узлов, позволяющих получать оригинальные оттенки звучания или звуковые эффекты.

Знакомство с терменвоксом лучше всего начать, конечно, с простой конструкции, например, приведенной на рис. 84. Собран терменвокс на трех интегральных микросхемах. В первом, перестраиваемом генераторе используется микросхема DD1. На элементах DD1.1 и DD1.2 выполнен мультивибратор, а на DD1.3 - разделительный каскад. Частота колебаний мультивибратора зависит от сопротивления резистора R1, емкости конденсатора С2 и емкости между антенной WAl и общим проводом инструмента, которую образует поднесенная к антенне рука исполнителя. Для получения максимальной чувствительности генератора к емкости антенна-рука частота генератора выбрана сравнительно высокой - сотни килогерц.

Во втором генераторе, с фиксированной частотой, работает микросхема DD2, элементы которой используются так же, как и элементы микросхемы первого генератора. Частоту генерируемых колебаний можно изменять в небольших пределах переменным резистором R2 «Частота».

С выхода каждого генератора сигнал поступает через согласующий каскад на «свой» вход смесителя, выполненного на микросхеме DD3. Если на одном входе сигнал частотой f1, а на другом f2, на выходе смесителя будут сигналы с частотами f1 ± f2. Причем амплитуда колебаний разностной частоты составит десятые доли и даже единицы вольт, что позволяет обойтись без дополнительного усилителя ЗЧ и подключить к выходу смесителя через конденсатор С4, трансформатор Т1 и переменный резистор R4 «Громкость» динамическую головку ВА1. Колебания же суммарной частоты динамической головкой не воспроизводятся.

Для увеличения громкости звука музыкального инструмента своими руками все логические элементы микросхемы DD3 включены параллельно. Громкость звука можно плавно изменять переменным резистором R4.

Терменвокс питается от источника GB1. Для предупреждения взаимного влияния генераторов напряжение на каждый из них подается через RC-фильтр. Потребляемый инструментом ток составляет 7... 10 мА.

Кроме указанных на схеме, могут быть использованы микросхемы К561ЛЕ5, К561ЛА9, К561ЛЕ10 (DD1 и DD2); К561ЛЕ5 К561ЛЕ6, К561ЛА7 - К561ЛА9, К561ЛЕ10 (DD3) или другие аналогичные микросхемы серий К176, К564. Конденсаторы С1 - СЗ могут быть КД, КТ, КМ, остальные - К50-6, К53-1. Переменные резисторы - СПО, СП4-1, постоянные - МЛТ-0,25 или другие малогабаритные, выключатель - МТ1, источник питания - батарея «Крона» или аккумулятор 7Д-0,1. Трансформатор - выходной от любого малогабаритного транзисторного приемника (используется одна половина первичной обмотки). Динамическая головка - мощностью 0,1 - 0,25 Вт, например 0,1ГД-6, 0.2ГД-1.

Все детали, кроме источника питания, монтируют на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1...1.5 мм. Она же является и лицевой панелью инструмента. Переменные резисторы и выключатель устанавливают в отверстиях платы, трансформатор и динамическую головку приклеивают. Напротив диффузора головки в плате сверлят отверстия и закрывают их со стороны монтажа неплотной тканью. Выводы деталей припаивают к проводникам платы.

Плату крепят к металлическому корпусу размерами ЗОХ Х75Х145 мм. Внутри корпуса размещают батарею питания и подключают ее к плате многожильным монтажным проводом в изоляции. Можно, конечно, использовать для подключения батареи разъем от использованной «Кроны».

Контакт ХТ1 представляет собой винт М4, пропущенный через отверстие в плате и закрепленный снаружи гайкой. Шляпка винта должна надежно соединяться с контактной площадкой платы, к которой подпаян конденсатор С1.

Перед игрой на терменвоксе к винту крепят антенну - отрезок металлической трубки диаметром 6 и длиной 300...500 мм с резьбой на конце.

Если монтаж выполнен без ошибок и детали исправны, терменвокс начинает работать сразу. Пользуются им так. Включив питание, устанавливают резистором R2 режим так называемых нулевых биений, когда частоты обоих генераторов равны и в динамической головке звука нет. В то же время при поднесении руки к антенне звук должен появляться. Более точной установкой движка резистора R2 добиваются того, чтобы звук появлялся на возможно большем расстоянии между рукой и антенной. Тональность звука должна возрастать, когда руку приближают к антенне.

Для повышения чувствительности инструмента нужно во время игры касаться одной рукой корпуса или ручки настройки (она должна быть металлической, надежно соединяться с корпусом резистора, а значит, с общим проводом инструмента), а другой подбирать мелодию.

Повысить громкость звучания терменвокса можно подключением к выходу смесителя усилителя звуковой частоты, например, радиоприемника или магнитофона. Для этих целей на корпусе инструмента желательно установить разъем.

Барабан - один из популярных музыкальные инструменты своими руками, которые любят собирать начинающие радиолюбители, но он очень громоздкий. Уменьшить его габариты и сделать более удобным в транспортировке - желание едва ли не каждого ансамбля. Если воспользоваться услугами электроники и собрать приставку к мощному усилителю (а он сегодня - неотъемлемая часть аппаратуры ансамбля), можно получить имитацию звучания барабана.

Если с помощью микрофона, усилителя и осциллографа «просмотреть» звук барабана, то удастся обнаружить следующее. Сигнал на экране осциллографа промелькнет в виде всплеска, напоминающего падающую каплю воды. Правда, падать она будет справа налево. Это значит, что левая часть «капли» имеет крутой фронт, обусловленный ударом по барабану, а затем следует затухающий спад - он определяется резонансными свойствами барабана. Внутри же «капля» заполнена колебаниями почти синусоидальной формы частотой 100...400 Гц - это зависит от размеров и конструктивных особенностей данного инструмента.

Подобные электрические колебания может генерировать, например, контур ударного возбуждения, если подать на него запускающий импульс, или генератор звуковых колебаний, находящийся в заторможенном (ждущем) режиме в момент кратковременного запуска его. Остановимся на втором варианте и познакомимся со схемой приставки, приведенной на рис. 87.

На транзисторе VT2 собран генератор звуковой частоты. Колебания в нем возбуждаются благодаря действию положительной обратной связи (ПОС) между коллектором и базой транзистора. ПОС осуществляется изменением фазы коллекторного сигнала на 180°, которое достигается с помощью трехзвенной цепочки С1 - СЗ, R4 - R6. Частота генерируемого сигнала зависит от номиналов этих деталей и может лежать в пределах 100...400 Гц.



Музыкальные инструменты своими руками. Схема электронного барабана

Ждущий режим генератора получается шунтированием резистора R4 фазосдвигающей цепи сопротивлением участка сток-исток полевого транзистора. А оно, в свою очередь, зависит от напряжения смещения на затворе транзистора, устанавливаемого переменным резистором R2. Чем больше напряжение смещения, т. е. чем выше по схеме находится движок переменного резистора, тем меньше сопротивление указанного участка, тем сильнее шунтирование резистора R4.

Исходное напряжение смещения, подаваемое на выводы резистора R4, образовано делителем R1VD1, иначе говоря, используется прямое напряжение диода. В данном случае диод совместно с резистором R1 выполняет роль своеобразного параметрического стабилизатора напряжения.

Получающийся сигнал генератора подается через разъем XS1 на усилитель мощности звуковой частоты.

Чтобы «ударить» по электронному барабану, нужно нажать кнопку SB1. Через ее замыкающиеся контакты, конденсатор С5 и диод VD2 на базовую цепь транзистора генератора поступит импульс напряжения положительной полярности. Генератор возбудится, и на усилитель мощности пройдет сигнал звуковой частоты. Длительность сигнала, иначе говоря, продолжительность звука барабана зависит от положения движка переменного резистора R2: чем он ближе к верхнему по схеме выводу, тем продолжительнее звук. Повторный «удар» прозвучит после того, как кнопку отпустят и нажмут вновь.

Полевой транзистор может быть серии КП302 с буквенными индексами А или Б, биполярный - из серии КТ312 или КТ315 с индексами Б - Г и возможно большим коэффициентом передачи тока. Диод VD1 - любой из серии Д226, VD2 - любой из серии Д9, Д18, Д20. Постоянные резисторы - МЛТ-0,25, переменный - СП-1. Конденсаторы С1 - СЗ - МБМ, С4 - К50-6, С5 - типа КМ или КЛС. Источник питания - «Крона».

Часть указанных деталей смонтирована на плате, устанавливаемой затем в небольшой корпус, желательно металлический. На лицевой стенке корпуса размещают переменный резистор, выключатель питания и разъем, а на верхней - кнопку SB1. Батарея находится внутри корпуса - она подключена к деталям приставки отрезками монтажного провода в изоляции. Конечно, для удобства замены батареи ее можно подключать через разъем от использованной «Кроны», но делать это необязательно, поскольку потребляемый приставкой ток не превышает 4 мА, и энергии батареи хватит надолго.

Налаживание приставки сводится к установке постоянного напряжения на коллекторе транзистора VT2 около 5 В подбором резистора R3. Если необходимо изменить тональность звука барабана, следует установить конденсаторы С1 - СЗ других номиналов (но обязательно одинаковых). При проверке и налаживании приставки работу ее контролируют высокоомными головными телефонами ТОН-1, ТОН-2 или аналогичными, подключаемыми к разъему через конденсатор емкостью 0,01...0,1 мкФ.

При исполнении различных музыкальных произведений обычно пользуются несколькими барабанами, каждый из которых обладает своей тональностью звучания. В электронном варианте под каждый барабан можно изготовить отдельную приставку с разными конденсаторами С1 - СЗ и подключать к усилителю тот или иной имитатор либо перестановкой вилки от усилителя мощности, либо с помощью переключателя, например кнопочного. В этом случае следует помнить об увеличении длины соединительных проводов и во избежание появления фона переменного тока в громкоговорителе экранировать их.

Возможен вариант, при котором все приставки будут смонтированы в общем корпусе, а их выходы соединены с разъемом XS1 через кнопочный, клавишный или галетный переключатель. Для питания такой конструкции нужно использовать источник большей мощности, например составленный из элементов 373, или сетевой выпрямитель с постоянным выходным напряжением 8...10 В.

Популярность электрогитары сегодня во многом объясняется возможностью подключать к ней электронные приставки, позволяющие получать самые разнообразные звуковые эффекты. Среди музыкантов-электрогитаристов можно услышать незнакомые для непосвященных слова «вау», «бустер», «дистошн», «тремоло» и другие. Все это - названия эффектов, получаемых во время исполнения мелодий на электрогитаре.

О некоторых приставках для получения подобных эффектов и пойдет рассказ. Все они рассчитаны на работу как с промышленными звукоснимателями, устанавливаемыми на обычную гитару, так и с самодельными, изготовленными по описаниям в популярной радиолюбительской литературе.


Отличный способ увеличения громкости звучания гитары это специальный музыкальный инструмент - звукосниматель к гитаре, преобразующий звуки в электрический сигнал усиливаемый электроакустической системой и вновь превращаемый в звук, но во много раз более мощный.

Впервые схема этого интересного электронного музыкального инструмента — игрушки появилась в журнале «Радио» в 1984 году, но позже (в 2002 г.) она была доработана И. Нечаевым – добавлен сенсорный регулятор громкости. Именно эту доработанную схему, несмотря на ее почтенный возраст, я и хочу предложить начинающим радиолюбителям. Конструкция инструмента проста для повторения, достаточно наглядна и может стать хорошей игрушкой не только ребенку, но и, как показывает практика, взрослому. Взглянем на схему устройства.

На элементах DD1.1 и DD1.2 собран генератор звуковой частоты, частота которого зависит от элементов R1, R2 и С1. Особенность генератора в том, что его частоту можно изменять интенсивностью освещения – за это отвечает фоторезистор R1. Чем выше освещенность фоторезистора, тем ниже его сопротивление и тем выше частота генератора. Именно поэтому музыкальный инструмент и называется «Светофон». Элемент DD1.3 является буферным, а DD1.4 совместно с конденсатором С2 является сенсорным регулятором громкости.

С регулятора сигнал поступает на усилитель, собранный на транзисторе VT1 и излучается головным телефоном ВF1. Итак, сигнал звуковой частоты, с выхода элемента DD1.3 поступает на дифференцирующую цепочку, состоящую из резисторов R3 (он подключен к сенсорам Е1,Е2), R4 и конденсатора С2. С нее короткие импульсы подаются на вход элемента DD1.4, усилитель и воспроизводятся головным телефоном. При этом если сенсоров не касаются, то R3 в работе цепи не участвует и громкость звука минимальна.

Если замкнуть сенсоры пальцем, то в работу включится резистор R3 и сопротивление кожи. Это позволит конденсатору заряжаться в паузах между импульсами, причем тем сильнее, чем сильнее перекрыты сенсоры пальцем. Благодаря этому на выходе элемента DD1.4 длительность импульсов увеличится, а громкость звука возрастет. Таким образом, перекрывая сенсоры пальцем, мы сможем в определенных пределах регулировать громкость звука, а меняя освещенность фоторезистора (к примеру, поворотом прибора относительно источника света) – частоту тона. После небольшой тренировки вполне реально сыграть на таком музыкальном инструменте несложную мелодию.

На месте DD1 могут работать К564ЛЕ5, К564ЛА7, К561ЛА7 , VD1 — КД521А, КД103А, КД503А. Конденсатор С3 – любой электролитический на рабочее напряжение не ниже 10 В, остальные – любые керамические. В качестве R1 можно использовать фоторезисторы ФСК-К1, СФ2-5, СФ2-6. В качестве излучателя BF1 подойдет любой телефон или динамическая головка сопротивлением не ниже 50 Ом.

Если сопротивление головки ниже, то вместо транзистора КТ315 придется поставить более мощный, к примеру, КТ972 с любой буквой. Конструкция светофона произвольная, сенсоры выполнены из кусочка фольгированного стеклотекстолита размером 20 х 30 мм. Для получения двух сенсоров вдоль полоски фольгу прорезают, ширина прорези – 0.5 … 1 мм.